EPYMT TDG Group 2 Problem Set 1

James Chau

09-08-2024

1 Integration

Compute the following integrals:

i
$$\int \frac{x}{x^2 + 2x + 4} dx$$

ii
$$\int \frac{3x^2 - 2x}{1 + x^2} dx$$

iii
$$\int \frac{1}{2\cos 1.5x} dx$$

iv (1)
$$\int_0^{\pi} \frac{1}{1 + \sin^2 t} dt.$$

(2)
$$\int_0^{\pi} \frac{\cos t}{1 + \sin^2 t} dt.$$

(3)
$$\int_0^{\pi} \frac{\sin 2t}{1 + \sin^2 t} dt.$$

v (Partial fraction decomposition)

(1) If
$$\frac{1}{(x-a)(x-b)} = \frac{C}{x-a} + \frac{D}{x-b}$$
 for some constants C, D , find C and D .

$$(2)$$
 Using (1) , evaluate the following integrals:

(a)
$$\int_0^1 \frac{1}{3x^2 + 10x + 3} dx.$$

(b) $\int_0^2 \frac{x}{2x^2 - 4x - 6} dx.$

(3) With ideas from (1), try to compute $\int \frac{1}{x^3 - 2x^2 - x + 2} dx$

vi
$$\int_1^2 \frac{1}{e^x - e^{-x}} \, dx.$$

2 Matrix

Find the inverse of the following matrices by elementary row operation:

i
$$\begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 5 \\ 4 & 2 & 2 \end{pmatrix}$$

3 Basis and linear independence

- i Determine whether the following collection of vectors forms is linearly independent. Also determine whether it forms a basis of \mathbb{R}^3 :
- (1) {(1,2,3), (4,5,6), (7,8,9)}
- $(2) \quad \{(1,0,0), (0,2,2)\}$
- (3) {(1,2,4), (0,0,2), (2,2,0)}

ii Determine whether the following statement is correct or not: Let $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$ such that $\{\mathbf{a}, \mathbf{b}\}$, $\{\mathbf{b}, \mathbf{c}\}$ and $\{\mathbf{c}, \mathbf{a}\}$ are linearly independent sets. Then $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is a linearly independent set.

- iii Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are distint vectors in \mathbb{R}^4 . Prove the following statements:
 - (1) $\{\mathbf{u}, \mathbf{v}\}$ is a linearly independent set if and only if $\{\mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v}\}$ is linearly independent set.
 - (2) { $\mathbf{u}, \mathbf{v}, \mathbf{w}$ } is a linearly independent set if and only if { $\mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{w}, \mathbf{v} + \mathbf{w}$ } is linearly independent set.

4 Linear Transformation

- i Find the matrix representation of the following linear transformation:
- (1) Reflecting a vector in \mathbb{R}^2 by y = ax, where a > 0
- (2) Rotating a vector in \mathbb{R}^3 by 30 degrees clockwisely about the z-axis.
- (3) Multiply the x-coordinate of a vector in \mathbb{R}^3 by 3.
- ii Can we find a 2×2 matrix representation of the translation of a vectors in \mathbb{R}^2 ? If yes, write down the matrix. If no, explain why.

5 Others

Please finish those exercises provided in the tutorial notes 1.

The following question aims to provide a way to show that a differentiable function f'(x) = 0 on an interval (a, b) is constant:

Recall that the definition of derivative is

$$f'(x) = \lim_{y \to x} \frac{f(y) - f(x)}{y - x}$$

and f attains a local minimum at c we have for $f(x) \ge f(c)$ for all $x \in (c - \delta, c + \delta)$ for some $\delta > 0$. f attains a local maximum at c we have for $f(x) \le f(c)$ for all $x \in (c - \delta, c + \delta)$ for some $\delta > 0$.

- i Show that if f attains local maximum or local minimum in $c \in (a, b)$ and f is differentiable at c, then we have f'(c) = 0.
- ii Do we have the same result if f attains local maximum or minimum at a or b, with f differentiable at the end-points? Besides, is the converse of (a) true?
- iii (Try it only if you want some challenge. It's ok to skip it.) (Mean Value Theorem) Prove that there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) f(a)}{b a}$.

You can use the following theorem without proof:

Theorem 5.1 (Rolle's theorem). If f(a) = f(b) = 0, then there exists $c \in (a, b)$ such that f'(c) = 0. (The proof of this theorem requires (a) and some theorems on continuous functions (called the extreme value theorem), which we will not discuss here.)

iv Hence, show that if f is continuous on [a, b] and f'(x) = 0 on (a, b), then f is constant on [a, b]. (We will use this skills in the future.)